
© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Tamas Piros, Technical Instructor and Courseware Developer, MarkLogic

@tpiros

THE PROMISE OF FULL-STACK
JAVASCRIPT REALIZED

SLIDE: 2

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

/me
 Senior Technical Instructor @ MarkLogic
 10+ years of full stack web development
 5+ years of technical training experience
 Prolific blogger on the “latest and greatest” web tech

 Get in touch via Twitter (@tpiros) or via email tamas.piros@marklogic.com

SLIDE: 3

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Agenda
 A little bit on JavaScript
 Discussion on various application architectures
 Demo

SLIDE: 4

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

The Whys and the Wherefores
 Building a web app means dozens of architectural decisions
 Using the MarkLogic database is a natural choice
 Save time and effort by applying rapid development
 Constant iteration for testing and improvements
 Maximum efficiency, speed and robustness
 Be lean, be agile

SLIDE: 5

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Why JavaScript?
 JavaScript is

everywhere

 JavaScript can be

used both at the
client well as at
the server

SLIDE: 6

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

And If You Need More Convincing...

SLIDE: 7

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Why JavaScript?
 JavaScript has been around since 1995
 It has gone through multiple iterations
 It has been used predominantly in the browser
 Specific frameworks/libraries exist such as jQuery, Angular and

Backbone.js
 It’s lightweight and expressive
 Thanks to Google’s V8 compiler JavaScript is blazingly fast
 As of 2009 it also runs at the server-side thanks to Node.js

SLIDE: 8

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Traditional Architecture
User Interface

● Data views
● User workflow
● Browser

Middle-tier
● Business rules
● Application logic

Communication
over HTTP

 Two tiered architecture

 Separation of user interface (view) from the

middle-tier (application logic)

 Missing database tier for persistent storage

SLIDE: 9

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

 Three (multi) tiered architecture

 Adds database for persistent

storage

 Presentation, application

processing and data management
functions are physically separated

Traditional Multi-tier Architecture
User Interface

● Data views
● User workflow
● Browser

Middle-tier
● Business rules
● Application logic

Communication
over HTTP Database tier

● Persistent storage
● Stored procedures

Communication
over HTTP

SLIDE: 10

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Traditional Multi-tier Architecture
Technology Data Model Environment

Struts HTML JSP / JavaScript

Spring Java Object Graph Java

Oracle Tables, rows,
columns

SQL, PL/SQL

SLIDE: 11

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Multi-tier Architecture

Challenges
 Different tiers use different technologies
 And use different data structures
 Difficult to map and configure data to domain model in

application

Wouldn’t it be great if we could use a single programming

language and a single data structure?

SLIDE: 12

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Application Architecture

Pros
 Same language throughout the stack
 Lightweight data format
 Data format ‘natively’ understood by

JavaScript

Con(s)

 Missing persistent data storage

User Interface
● Data views
● User workflow
● Browser

Middle-tier
● Business rules
● Application logic

JSON over HTTP

SLIDE: 13

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Application Architecture
User Interface

● Data views
● User workflow
● Browser

Middle-tier
● Business rules
● Application logic

JSON over HTTP

Wouldn’t it be nice to add a database
to this architecture that can:

 Store JSON documents natively (along with
XML, binary and RDF)?

 Allow you to construct queries using
JavaScript?

 Have ACID properties instead of eventual
consistency?

 Give you all the indexes you need and allow
you to execute search out of the box?

 Apply role based, document level security?
 Execute SPARQL queries?
 Manage the database via REST API calls?

SLIDE: 14

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Application Architecture

Middle-tier
● Business rules
● Application logic

JSON over HTTP

MarkLogic can:
 Store JSON documents natively (along

with XML, binary and RDF)
 Allow you to construct queries using

JavaScript
 Have ACID properties instead of eventual

consistency
 Give you all the indexes you need and

allow you to execute search out of the box
 Apply role based, document level security
 Execute SPARQL queries
 Manage the database via REST API calls

JSON/XML over HTTP

Database-tier
● Persistent storage

User Interface
● Data views
● User workflow
● Browser

SLIDE: 15

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Multi-tier Architecture
Technology Data Model Environment

Angular JSON JavaScript

Node.js JSON JavaScript

MarkLogic JSON JavaScript

 Run JavaScript at the server
via Node.js

 It’s fast ‒ due to the event
loop and asynchronous
features of the language

 MarkLogic has a Node.js
Client API

 Registered npm package
 Focus on application features

rather than plumbing

JavaScript at the
Middle-tier

var marklogic = require('marklogic');
var db =
marklogic.createDatabaseClient(connect
ion);

var qb = marklogic.queryBuilder;
db.documents.query(
 qb.where(
 qb.collection('books')
)
).result().then(function(response) {
 console.log(response);
});

var items = [];
var results = cts.search(cts.andQuery(['skywalker',
cts.notQuery('force')]));
for (var result of results) {
 items.push({score: cts.score(result), uri: xdmp.nodeUri(result),
name: result.root.name});
}
items;

JavaScript in MarkLogic (Database Tier)
 Runs on Google’s V8 engine
 Allows you to execute JavaScript code close to your data
 Both native JavaScript (including some ES2015) and proprietary JavaScript

 Supports all geospatial query types

SLIDE: 18

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Data Hub Architecture
 Replace the User Interface with Web Service endpoints
 Beneficial for Data Hubs
 Consumption of endpoints happen at several layers later
 JavaScript HTTP services are useful even without a front-end
 Think along the lines of Service Oriented Architecture and

microservices

SLIDE: 19

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

MarkLogic ♥ JavaScript

 Let keyword

 Object destructuring

 Template literals

 Arrow functions

 Promises

 Maps and Sets

 Future of JavaScript is determined by Ecma committee
 Some ECMAScript 2015 features are already implemented in MarkLogic 8 with

more coming in MarkLogic 9:
 Iterators, generators

 Arrow functions

 Classes

 Template strings

 Spread operator and rest
parameter

 JavaScript is a first class language in MarkLogic and we will keep pace with the

growing community

DEMO

SLIDE: 25

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

GeoPhoto ‒ Technical Details
 Three-tiered architecture
 Application that works with geospatial metadata (Exif) extracted from images
 Uses JSON documents, JPEG binaries, RDF triples
 Authentication and authorization via JWT (JSON Web Tokens)
 Document security using MarkLogic’s built in security
 Single Page Application design
 Text and GeoSpatial search
 Uses AngularJS at the UI, Node.js at the middle-tier
 Server-side JavaScript is used at MarkLogic

SLIDE: 26

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

GeoPhoto ‒ Technical Details

User Interface

Middle Tier

Middle Tier

User Interface

SLIDE: 27

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

GeoPhoto ‒ Technical Details
 Same data type means significant reduction in format mismatch

between the tiers

 Share code and data models between the tiers

 Performance and application scalability

SLIDE: 28

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Summary
 Benefits of using the same language throughout the stack
 Helps with reduction of data mismatch between tiers
 Helps with code portability
 JavaScript is a first class language in MarkLogic
 Node.js Client API saves you from plumbing

SLIDE: 29

© COPYRIGHT 2016 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Resources
 Get the database for free!
 GeoPhoto (GitHub)
 Samplestack (GitHub)
 Character Search v1 (GitHub)
 Character Search v2 (GitHub)
 MarkLogic Java API (GitHub)
 MarkLogic Node.js API (GitHub)
 How is MarkLogic different from MongoDB? (Article)
 Free Training

https://developer.marklogic.com/products
https://github.com/marklogic/Geophoto/
https://github.com/marklogic/marklogic-samplestack
https://github.com/marklogic/mlu-character-search/
https://github.com/tamaspiros/mlu-conference
https://github.com/marklogic/java-client-api
https://github.com/marklogic/node-client-api
https://developer.marklogic.com/blog/how-is-marklogic-different-from-mongodb
http://www.marklogic.com/training/

Q&A

	THE PROMISE OF FULL-STACK JAVASCRIPT REALIZED
	/me
	Agenda
	The Whys and the Wherefores
	Why JavaScript?
	And If You Need More Convincing...
	Why JavaScript?
	Traditional Architecture
	Traditional Multi-tier Architecture
	Traditional Multi-tier Architecture
	Multi-tier Architecture
	Application Architecture
	Application Architecture
	Application Architecture
	Multi-tier Architecture
	JavaScript at the Middle-tier
	JavaScript in MarkLogic (Database Tier)
	Data Hub Architecture
	MarkLogic ♥ JavaScript
	DEMO
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	GeoPhoto ‒ Technical Details
	GeoPhoto ‒ Technical Details
	GeoPhoto ‒ Technical Details
	Summary
	Resources
	Q&A

